Parametric and Nonparametric Inference for Statistical Dynamic Shape Analysis with Applications (SpringerBriefs in Statistics)
暫譯: 統計動態形狀分析的參數與非參數推斷及其應用 (SpringerBriefs in Statistics)
Chiara Brombin
- 出版商: Springer
- 出版日期: 2016-02-19
- 售價: $2,420
- 貴賓價: 9.5 折 $2,299
- 語言: 英文
- 頁數: 128
- 裝訂: Paperback
- ISBN: 3319263102
- ISBN-13: 9783319263106
-
相關分類:
機率統計學 Probability-and-statistics
海外代購書籍(需單獨結帳)
相關主題
商品描述
This book considers specific inferential issues arising from the analysis of dynamic shapes with the attempt to solve the problems at hand using probability models and nonparametric tests. The models are simple to understand and interpret and provide a useful tool to describe the global dynamics of the landmark configurations. However, because of the non-Euclidean nature of shape spaces, distributions in shape spaces are not straightforward to obtain.
The book explores the use of the Gaussian distribution in the configuration space, with similarity transformations integrated out. Specifically, it works with the offset-normal shape distribution as a probability model for statistical inference on a sample of a temporal sequence of landmark configurations. This enables inference for Gaussian processes from configurations onto the shape space.
The book is divided in two parts, with the first three chapters covering material on the offset-normal shape distribution, and the remaining chapters covering the theory of NonParametric Combination (NPC) tests. The chapters offer a collection of applications which are bound together by the theme of this book.They refer to the analysis of data from the FG-NET (Face and Gesture Recognition Research Network) database with facial expressions. For these data, it may be desirable to provide a description of the dynamics of the expressions, or testing whether there is a difference between the dynamics of two facial expressions or testing which of the landmarks are more informative in explaining the pattern of an expression.
商品描述(中文翻譯)
本書考慮了從動態形狀分析中產生的特定推論問題,並試圖使用概率模型和非參數檢驗來解決當前的問題。這些模型易於理解和解釋,並提供了一種有用的工具來描述標記配置的全局動態。然而,由於形狀空間的非歐幾里得性,形狀空間中的分佈並不容易獲得。
本書探討了在配置空間中使用高斯分佈,並將相似變換整合出去。具體而言,它使用偏移正態形狀分佈作為統計推斷的概率模型,針對一組時間序列的標記配置樣本進行分析。這使得可以從配置推斷高斯過程到形狀空間。
本書分為兩部分,前三章涵蓋偏移正態形狀分佈的材料,其餘章節則涵蓋非參數組合(NonParametric Combination, NPC)檢驗的理論。這些章節提供了一系列應用,這些應用以本書的主題為綱。
它們涉及來自 FG-NET(面部和手勢識別研究網絡)數據庫的面部表情數據分析。對於這些數據,可能希望提供表情動態的描述,或測試兩種面部表情的動態之間是否存在差異,或測試哪些標記在解釋表情模式方面更具信息性。