Distribution Dependent Stochastic Differential Equations
Feng-Yu Wang, Panpan Ren
- 出版商: World Scientific Pub
- 出版日期: 2024-11-01
- 售價: $5,450
- 貴賓價: 9.5 折 $5,178
- 語言: 英文
- 頁數: 376
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 9811280142
- ISBN-13: 9789811280146
海外代購書籍(需單獨結帳)
相關主題
商品描述
Corresponding to the link of Itô's stochastic differential equations (SDEs) and linear parabolic equations, distribution dependent SDEs (DDSDEs) characterize nonlinear Fokker-Planck equations. This type of SDEs is named after McKean-Vlasov due to the pioneering work of H P McKean (1966), where an expectation dependent SDE is proposed to characterize nonlinear PDEs for Maxwellian gas. Moreover, by using the propagation of chaos for Kac particle systems, weak solutions of DDSDEs are constructed as weak limits of mean field particle systems when the number of particles goes to infinity, so that DDSDEs are also called mean-field SDEs. To restrict a DDSDE in a domain, we consider the reflection boundary by following the line of A V Skorohod (1961).
This book provides a self-contained account on singular SDEs and DDSDEs with or without reflection. It covers well-posedness and regularities for singular stochastic differential equations; well-posedness for singular reflected SDEs; well-posedness of singular DDSDEs; Harnack inequalities and derivative formulas for singular DDSDEs; long time behaviors for DDSDEs; DDSDEs with reflecting boundary; and killed DDSDEs.
商品描述(中文翻譯)
對應於伊藤隨機微分方程(SDEs)和線性拋物方程的連結,分佈依賴的隨機微分方程(DDSDEs)特徵化非線性福克-普朗克方程。這類隨機微分方程以麥基恩-弗拉索夫(McKean-Vlasov)命名,源於H P McKean於1966年的開創性工作,該工作提出了一種期望依賴的隨機微分方程,以特徵化馬克士威氣體的非線性偏微分方程。此外,通過使用Kac粒子系統的混沌傳播,DDSDEs的弱解被構造為當粒子數量趨近於無限時的均場粒子系統的弱極限,因此DDSDEs也被稱為均場隨機微分方程。為了將DDSDEs限制在一個區域內,我們考慮遵循A V Skorohod(1961)的方法來處理反射邊界。
本書提供了關於奇異隨機微分方程和有無反射的DDSDEs的自足說明。內容涵蓋了奇異隨機微分方程的良好定義性和正則性;奇異反射隨機微分方程的良好定義性;奇異DDSDEs的良好定義性;奇異DDSDEs的哈爾納克不等式和導數公式;DDSDEs的長期行為;具有反射邊界的DDSDEs;以及被殺死的DDSDEs。