Hidden Semi-Markov Models: Theory, Algorithms and Applications(Paperback)
暫譯: 隱藏半馬爾可夫模型:理論、演算法與應用(平裝本)
Shun-Zheng Yu
- 出版商: Elsevier Science
- 出版日期: 2015-10-26
- 售價: $1,710
- 貴賓價: 9.5 折 $1,625
- 語言: 英文
- 頁數: 208
- 裝訂: Paperback
- ISBN: 0128027673
- ISBN-13: 9780128027677
-
相關分類:
Algorithms-data-structures
海外代購書籍(需單獨結帳)
商品描述
Hidden semi-Markov models (HSMMs) are among the most important models in the area of artificial intelligence / machine learning. Since the first HSMM was introduced in 1980 for machine recognition of speech, three other HSMMs have been proposed, with various definitions of duration and observation distributions. Those models have different expressions, algorithms, computational complexities, and applicable areas, without explicitly interchangeable forms.
Hidden Semi-Markov Models: Theory, Algorithms and Applications provides a unified and foundational approach to HSMMs, including various HSMMs (such as the explicit duration, variable transition, and residential time of HSMMs), inference and estimation algorithms, implementation methods and application instances. Learn new developments and state-of-the-art emerging topics as they relate to HSMMs, presented with examples drawn from medicine, engineering and computer science.
- Discusses the latest developments and emerging topics in the field of HSMMs
- Includes a description of applications in various areas including, Human Activity Recognition, Handwriting Recognition, Network Traffic Characterization and Anomaly Detection, and Functional MRI Brain Mapping.
- Shows how to master the basic techniques needed for using HSMMs and how to apply them.
商品描述(中文翻譯)
隱藏半馬可夫模型(HSMMs)是人工智慧/機器學習領域中最重要的模型之一。自從1980年首次引入HSMM用於機器語音識別以來,已提出三種其他HSMM,這些模型對持續時間和觀察分佈有不同的定義。這些模型具有不同的表達方式、算法、計算複雜度和適用領域,且沒有明確可互換的形式。
《隱藏半馬可夫模型:理論、算法與應用》提供了一個統一且基礎的方法來研究HSMM,包括各種HSMM(如顯式持續時間、變量轉移和HSMM的居住時間)、推斷和估計算法、實現方法及應用實例。學習與HSMM相關的新發展和最前沿的主題,並以醫學、工程和計算機科學中的例子進行說明。
- 討論HSMM領域的最新發展和新興主題
- 包括在各個領域的應用描述,包括人類活動識別、手寫識別、網路流量特徵化和異常檢測,以及功能性磁共振成像腦圖繪製
- 展示如何掌握使用HSMM所需的基本技術以及如何應用它們