Statistical Regression and Classification: From Linear Models to Machine Learning (Chapman & Hall/CRC Texts in Statistical Science)
暫譯: 統計回歸與分類:從線性模型到機器學習(Chapman & Hall/CRC 統計科學系列)
Norman Matloff
- 出版商: Chapman and Hall/CRC
- 出版日期: 2017-07-20
- 售價: $6,760
- 貴賓價: 9.5 折 $6,422
- 語言: 英文
- 頁數: 528
- 裝訂: Hardcover
- ISBN: 113806646X
- ISBN-13: 9781138066465
-
相關分類:
Machine Learning
海外代購書籍(需單獨結帳)
相關主題
商品描述
Statistical Regression and Classification: From Linear Models to Machine Learning takes an innovative look at the traditional statistical regression course, presenting a contemporary treatment in line with today's applications and users. The text takes a modern look at regression:
* A thorough treatment of classical linear and generalized linear models, supplemented with introductory material on machine learning methods.
* Since classification is the focus of many contemporary applications, the book covers this topic in detail, especially the multiclass case.
* In view of the voluminous nature of many modern datasets, there is a chapter on Big Data.
* Has special Mathematical and Computational Complements sections at ends of chapters, and exercises are partitioned into Data, Math and Complements problems.
* Instructors can tailor coverage for specific audiences such as majors in Statistics, Computer Science, or Economics.
* More than 75 examples using real data.
The book treats classical regression methods in an innovative, contemporary manner. Though some statistical learning methods are introduced, the primary methodology used is linear and generalized linear parametric models, covering both the Description and Prediction goals of regression methods. The author is just as interested in Description applications of regression, such as measuring the gender wage gap in Silicon Valley, as in forecasting tomorrow's demand for bike rentals. An entire chapter is devoted to measuring such effects, including discussion of Simpson's Paradox, multiple inference, and causation issues. Similarly, there is an entire chapter of parametric model fit, making use of both residual analysis and assessment via nonparametric analysis.
Norman Matloff is a professor of computer science at the University of California, Davis, and was a founder of the Statistics Department at that institution. His current research focus is on recommender systems, and applications of regression methods to small area estimation and bias reduction in observational studies. He is on the editorial boards of the Journal of Statistical Computation and the R Journal. An award-winning teacher, he is the author of The Art of R Programming and Parallel Computation in Data Science: With Examples in R, C++ and CUDA.
商品描述(中文翻譯)
統計回歸與分類:從線性模型到機器學習以創新的方式探討傳統的統計回歸課程,提供符合當今應用與使用者的現代處理。本書對回歸進行了現代化的探討:
* 徹底介紹經典的線性與廣義線性模型,並補充機器學習方法的入門材料。
* 由於分類是許多當代應用的重點,本書詳細涵蓋了這一主題,特別是多類別的情況。
* 鑒於許多現代數據集的龐大特性,本書有一章專門討論大數據。
* 每章末尾有特別的數學與計算補充部分,並將練習題分為數據、數學和補充問題。
* 教師可以根據特定受眾(如統計學、計算機科學或經濟學專業的學生)調整內容。
* 使用真實數據的例子超過75個。
本書以創新且現代的方式處理經典回歸方法。雖然介紹了一些統計學習方法,但主要的方法論是線性和廣義線性參數模型,涵蓋回歸方法的描述和預測目標。作者對回歸的描述應用同樣感興趣,例如測量矽谷的性別薪資差距,與預測明天的自行車租賃需求同樣重要。整整一章專門用於測量這些影響,包括討論辛普森悖論、多重推斷和因果關係問題。同樣,還有一整章專門討論參數模型的擬合,利用殘差分析和非參數分析進行評估。
諾曼·馬特洛夫(Norman Matloff)是加州大學戴維斯分校的計算機科學教授,也是該機構統計系的創始人之一。他目前的研究重點是推薦系統,以及回歸方法在小區域估計和觀察性研究中的偏差減少應用。他是《統計計算期刊》(Journal of Statistical Computation)和《R期刊》(R Journal)的編輯委員會成員。作為一位獲獎教師,他是《R程式設計的藝術》(The Art of R Programming)和《數據科學中的並行計算:以R、C++和CUDA的範例》(Parallel Computation in Data Science: With Examples in R, C++ and CUDA)的作者。