Probability and Statistics for Data Science: Math + R + Data
暫譯: 數據科學的機率與統計:數學 + R + 數據
Matloff, Norman
- 出版商: CRC
- 出版日期: 2019-06-20
- 售價: $2,450
- 貴賓價: 9.5 折 $2,328
- 語言: 英文
- 頁數: 376
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1138393290
- ISBN-13: 9781138393295
-
相關分類:
機率統計學 Probability-and-statistics、R 語言
-
相關翻譯:
概率與統計:數據科學視角 (簡中版)
-
其他版本:
Probability and Statistics for Data Science: Math + R + Data
立即出貨 (庫存 < 3)
買這商品的人也買了...
-
Foundations of Algorithms, 5/e (Paperback)$1,790$1,754 -
無線網路與行動計算, 2/e$550$495 -
$296R語言實用教程 -
$352生成對抗網絡入門指南 (Generative adversarial Networks) -
電腦網際網路, 7/e (國際版)(Computer Networking: A Top-Down Approach, 7/e)(附部分內容光碟)$680$612 -
$465統計學習方法, 2/e -
邁向 Linux 工程師之路:Superuser 一定要懂的技術與運用, 2/e (How Linux Works: What Every Superuser Should Know, 2/e)$600$468 -
當代機率:理論與應用, 4/e (Ghahramani: Fundamentals of Probability With Stochastic Processes, 4/e)$780$741 -
基礎生物學, 9/e (Johnson)$810$770 -
資料視覺化|製作充滿說服力的資訊圖表 (Fundamentals of Data Visualization)$780$616 -
$356Python機器學習及實踐 -
$401TensorFlow深度學習及實踐 -
深度學習 -- 從入門到實戰 (使用 MATLAB)(附範例光碟)$460$414 -
大數據時代超吸睛視覺化工具與技術:Tableau 資料分析師進階高手養成實戰經典$600$468 -
演算法-名校攻略秘笈, 10/e$400$380 -
$352電腦網絡基礎(第5版) -
$454深度學習 — 從神經網絡到深度強化學習的演進 -
$607機器學習導論 -
公職考試講重點【資料結構】[適用三等、四等/高考、普考、地方特考]$500$475 -
64位元 Debian Linux 作業系統實務 -- Bullseye 版$640$627 -
計算機組成原理:作業系統概論Ⅰ$560$437 -
計算機組成原理:作業系統概論Ⅱ$600$468 -
公職考試 2022 試題大補帖【程式語言(含程式設計、程式語言概要、程式設計概要)】(103~110年試題)(申論題型)[適用三等、四等/高考、普考、地方特考、關務、鐵特、技師考試]$520$494 -
物聯網資訊安全實務入門$420$332
相關主題
商品描述
This book covers "math stat"--distributions, expected value, estimation etc.--but takes the phrase "Data Science" in the title quite seriously:
* Real datasets are used extensively.
* All data analysis is supported by R coding.
* Includes many Data Science applications, such as PCA, mixture distributions, random graph models, Hidden Markov models, linear and logistic regression, and neural networks.
* Leads the student to think critically about the "how" and "why" of statistics, and to "see the big picture."
* Not "theorem/proof"-oriented, but concepts and models are stated in a mathematically precise manner.
Prerequisites are calculus, some matrix algebra, and some experience in programming.
Norman Matloff is a professor of computer science at the University of California, Davis, and was formerly a statistics professor there. He is on the editorial boards of the Journal of Statistical Software and The R Journal. His book Statistical Regression and Classification: From Linear Models to Machine Learning was the recipient of the Ziegel Award for the best book reviewed in Technometrics in 2017. He is a recipient of his university's Distinguished Teaching Award.
商品描述(中文翻譯)
這本書涵蓋了「數學統計」——分佈、期望值、估計等——但對於書名中的「數據科學」這個詞非常認真:
* 實際數據集被廣泛使用。
* 所有數據分析都由 R 語言編碼支持。
* 包含許多數據科學應用,例如主成分分析(PCA)、混合分佈、隨機圖模型、隱馬可夫模型、線性和邏輯回歸以及神經網絡。
* 引導學生批判性地思考統計的「如何」和「為何」,並「看到全局」。
* 不是以「定理/證明」為導向,但概念和模型以數學精確的方式陳述。
先修課程包括微積分、一些矩陣代數和一些編程經驗。
**Norman Matloff** 是加州大學戴維斯分校的計算機科學教授,曾任該校的統計學教授。他是《統計軟件期刊》(Journal of Statistical Software)和《R期刊》(The R Journal)的編輯委員會成員。他的書籍《統計回歸與分類:從線性模型到機器學習》(Statistical Regression and Classification: From Linear Models to Machine Learning)於2017年獲得《Technometrics》最佳書籍評價的 Ziegel 獎。他是其大學的傑出教學獎獲得者。
作者簡介
Norman Matloff is a professor of computer science at the University of California, Davis, and was formerly a statistics professor there. He is on the editorial boards of the Journal of Statistical Software and The R Journal. His book Statistical Regression and Classification: From Linear Models to Machine Learning was the recipient of the Ziegel Award for the best book reviewed in Technometrics in 2017. He is a recipient of his university's Distinguished Teaching Award.
作者簡介(中文翻譯)
諾曼·馬特洛夫是加州大學戴維斯分校的計算機科學教授,曾擔任該校的統計學教授。他是Journal of Statistical Software和The R Journal的編輯委員會成員。他的著作Statistical Regression and Classification: From Linear Models to Machine Learning於2017年獲得Technometrics最佳書籍評價的齊格爾獎。他也是該大學的傑出教學獎得主。