Statistical Rethinking: A Bayesian Course with Examples in R and Stan (Hardcover)
暫譯: 統計重思:以 R 和 Stan 為例的貝葉斯課程 (精裝版)

Richard McElreath

買這商品的人也買了...

相關主題

商品描述

Statistical Rethinking: A Bayesian Course with Examples in R and Stan builds readers’ knowledge of and confidence in statistical modeling. Reflecting the need for even minor programming in today’s model-based statistics, the book pushes readers to perform step-by-step calculations that are usually automated. This unique computational approach ensures that readers understand enough of the details to make reasonable choices and interpretations in their own modeling work.

 

The text presents generalized linear multilevel models from a Bayesian perspective, relying on a simple logical interpretation of Bayesian probability and maximum entropy. It covers from the basics of regression to multilevel models. The author also discusses measurement error, missing data, and Gaussian process models for spatial and network autocorrelation.

 

By using complete R code examples throughout, this book provides a practical foundation for performing statistical inference. Designed for both PhD students and seasoned professionals in the natural and social sciences, it prepares them for more advanced or specialized statistical modeling.

Web Resource
The book is accompanied by an R package (rethinking) that is available on the author’s website and GitHub. The two core functions (map and map2stan) of this package allow a variety of statistical models to be constructed from standard model formulas.

商品描述(中文翻譯)

《統計重思:一個以 R 和 Stan 為例的貝葉斯課程》增強讀者對統計建模的知識和信心。反映出當今基於模型的統計學對於即使是小型程式設計的需求,本書推動讀者進行通常自動化的逐步計算。這種獨特的計算方法確保讀者理解足夠的細節,以便在自己的建模工作中做出合理的選擇和解釋。

本書從貝葉斯的角度介紹了廣義線性多層模型,依賴於對貝葉斯概率和最大熵的簡單邏輯解釋。內容涵蓋從回歸的基本概念到多層模型。作者還討論了測量誤差、缺失數據以及用於空間和網絡自相關的高斯過程模型。

通過整本書中使用完整的 R 代碼範例,這本書為進行統計推斷提供了實用的基礎。該書旨在為自然科學和社會科學的博士生及資深專業人士設計,為他們準備更高級或專門的統計建模。

*網路資源*
本書附帶一個 R 套件(rethinking),可在作者的網站和 GitHub 上獲得。該套件的兩個核心函數(map 和 map2stan)允許從標準模型公式構建各種統計模型。