Efficient Processing of Deep Neural Networks (Hardcover)
暫譯: 深度神經網絡的高效處理 (精裝版)
Sze, Vivienne, Chen, Yu-Hsin, Yang, Tien-Ju
- 出版商: Morgan & Claypool
- 出版日期: 2020-06-24
- 售價: $3,810
- 貴賓價: 9.5 折 $3,620
- 語言: 英文
- 頁數: 342
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 168173835X
- ISBN-13: 9781681738352
-
其他版本:
Efficient Processing of Deep Neural Networks (Paperback)
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$1,200$1,140 -
$1,200$840 -
$2,460$2,337 -
$550$495 -
$680$578 -
$580$458 -
$1,200$948 -
$1,380$1,352 -
$465統計學習方法, 2/e
-
$267C++ 代碼整潔之道:C++17 可持續軟件開發模式實踐 (Clean C++: Sustainable Software Development Patterns and Best Practices with C++ 17)
-
$990$782 -
$1,200$840 -
$880$616 -
$580$458 -
$708$673 -
$768$730 -
$750$592 -
$500$390 -
$1,080Blender 2D Animation: The Complete Guide to the Grease Pencil
-
$210$200 -
$454博弈論:策略分析入門, 3/e (Game Theory: A Nontechnical Introduction to the Analysis of Strategy, 3/e)
-
$539$512 -
$594$564 -
$599$569 -
$880$695
相關主題
商品描述
This book provides a structured treatment of the key principles and techniques for enabling efficient processing of deep neural networks (DNNs). DNNs are currently widely used for many artificial intelligence (AI) applications, including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Therefore, techniques that enable efficient processing of deep neural networks to improve key metrics--such as energy-efficiency, throughput, and latency--without sacrificing accuracy or increasing hardware costs are critical to enabling the wide deployment of DNNs in AI systems.
The book includes background on DNN processing; a description and taxonomy of hardware architectural approaches for designing DNN accelerators; key metrics for evaluating and comparing different designs; features of DNN processing that are amenable to hardware/algorithm co-design to improve energy efficiency and throughput; and opportunities for applying new technologies. Readers will find a structured introduction to the field as well as formalization and organization of key concepts from contemporary work that provide insights that may spark new ideas.
商品描述(中文翻譯)
這本書提供了關於有效處理深度神經網絡(DNNs)的關鍵原則和技術的結構化探討。DNNs 目前在許多人工智慧(AI)應用中被廣泛使用,包括計算機視覺、語音識別和機器人技術。雖然 DNNs 在許多 AI 任務中提供了最先進的準確性,但這也伴隨著高計算複雜度的代價。因此,能夠有效處理深度神經網絡的技術,以改善關鍵指標——如能效、吞吐量和延遲——而不犧牲準確性或增加硬體成本,對於促進 DNNs 在 AI 系統中的廣泛部署至關重要。
本書包括 DNN 處理的背景;設計 DNN 加速器的硬體架構方法的描述和分類;評估和比較不同設計的關鍵指標;有助於硬體/算法共同設計以提高能效和吞吐量的 DNN 處理特徵;以及應用新技術的機會。讀者將會發現對該領域的結構化介紹,以及當代工作的關鍵概念的正式化和組織,這些概念提供的見解可能會激發新的想法。