Embedded Deep Learning: Algorithms, Architectures and Circuits for Always-on Neural Network Processing
暫譯: 嵌入式深度學習:持續運行的神經網絡處理算法、架構與電路
Bert Moons, Daniel Bankman, Marian Verhelst
- 出版商: Springer
- 出版日期: 2018-11-03
- 定價: $4,480
- 售價: 8.0 折 $3,584
- 語言: 英文
- 頁數: 206
- 裝訂: Hardcover
- ISBN: 3319992228
- ISBN-13: 9783319992228
-
相關分類:
嵌入式系統、DeepLearning、Algorithms-data-structures
-
相關翻譯:
嵌入式深度學習:算法和硬件實現技術 (簡中版)
立即出貨 (庫存=1)
買這商品的人也買了...
相關主題
商品描述
This book covers algorithmic and hardware implementation techniques to enable embedded deep learning. The authors describe synergetic design approaches on the application-, algorithmic-, computer architecture-, and circuit-level that will help in achieving the goal of reducing the computational cost of deep learning algorithms. The impact of these techniques is displayed in four silicon prototypes for embedded deep learning.
- Gives a wide overview of a series of effective solutions for energy-efficient neural networks on battery constrained wearable devices;
- Discusses the optimization of neural networks for embedded deployment on all levels of the design hierarchy – applications, algorithms, hardware architectures, and circuits – supported by real silicon prototypes;
- Elaborates on how to design efficient Convolutional Neural Network processors, exploiting parallelism and data-reuse, sparse operations, and low-precision computations;
- Supports the introduced theory and design concepts by four real silicon prototypes. The physical realization’s implementation and achieved performances are discussed elaborately to illustrated and highlight the introduced cross-layer design concepts.
商品描述(中文翻譯)
這本書涵蓋了嵌入式深度學習的演算法和硬體實現技術。作者描述了在應用、演算法、計算機架構和電路層面上的協同設計方法,這些方法將有助於實現降低深度學習演算法計算成本的目標。這些技術的影響在四個嵌入式深度學習的矽原型中得以展示。
- 提供了一系列針對電池受限的可穿戴設備上能效神經網絡的有效解決方案的廣泛概述;
- 討論了針對嵌入式部署的神經網絡在設計層級的所有層面(應用、演算法、硬體架構和電路)的優化,並以真實的矽原型為支持;
- 詳細說明了如何設計高效的卷積神經網絡處理器,利用並行性和數據重用、稀疏運算和低精度計算;
- 透過四個真實的矽原型來支持所介紹的理論和設計概念,並詳細討論了物理實現的實施和所達成的性能,以說明和突顯所介紹的跨層設計概念。