Python: Data Analytics and Visualization
暫譯: Python:數據分析與視覺化

Phuong Vo.T.H, Martin Czygan, Ashish Kumar

  • 出版商: Packt Publishing
  • 出版日期: 2017-04-11
  • 售價: $3,820
  • 貴賓價: 9.5$3,629
  • 語言: 英文
  • 頁數: 866
  • 裝訂: Paperback
  • ISBN: 1788290097
  • ISBN-13: 9781788290098
  • 相關分類: Python程式語言Data Science
  • 海外代購書籍(需單獨結帳)

買這商品的人也買了...

相關主題

商品描述

Understand, evaluate, and visualize data About This Book - Learn basic steps of data analysis and how to use Python and its packages - A step-by-step guide to predictive modeling including tips, tricks, and best practices - Effectively visualize a broad set of analyzed data and generate effective results Who This Book Is For This book is for Python Developers who are keen to get into data analysis and wish to visualize their analyzed data in a more efficient and insightful manner. What You Will Learn - Get acquainted with NumPy and use arrays and array-oriented computing in data analysis - Process and analyze data using the time-series capabilities of Pandas - Understand the statistical and mathematical concepts behind predictive analytics algorithms - Data visualization with Matplotlib - Interactive plotting with NumPy, Scipy, and MKL functions - Build financial models using Monte-Carlo simulations - Create directed graphs and multi-graphs - Advanced visualization with D3 In Detail You will start the course with an introduction to the principles of data analysis and supported libraries, along with NumPy basics for statistics and data processing. Next, you will overview the Pandas package and use its powerful features to solve data-processing problems. Moving on, you will get a brief overview of the Matplotlib API .Next, you will learn to manipulate time and data structures, and load and store data in a file or database using Python packages. You will learn how to apply powerful packages in Python to process raw data into pure and helpful data using examples. You will also get a brief overview of machine learning algorithms, that is, applying data analysis results to make decisions or building helpful products such as recommendations and predictions using Scikit-learn. After this, you will move on to a data analytics specialization-predictive analytics. Social media and IOT have resulted in an avalanche of data. You will get started with predictive analytics using Python. You will see how to create predictive models from data. You will get balanced information on statistical and mathematical concepts, and implement them in Python using libraries such as Pandas, scikit-learn, and NumPy. You'll learn more about the best predictive modeling algorithms such as Linear Regression, Decision Tree, and Logistic Regression. Finally, you will master best practices in predictive modeling. After this, you will get all the practical guidance you need to help you on the journey to effective data visualization. Starting with a chapter on data frameworks, which explains the transformation of data into information and eventually knowledge, this path subsequently cover the complete visualization process using the most popular Python libraries with working examples This Learning Path combines some of the best that Packt has to offer in one complete, curated package. It includes content from the following Packt products: ? Getting Started with Python Data Analysis, Phuong Vo.T.H &Martin Czygan ? Learning Predictive Analytics with Python, Ashish Kumar ? Mastering Python Data Visualization, Kirthi Raman Style and approach The course acts as a step-by-step guide to get you familiar with data analysis and the libraries supported by Python with the help of real-world examples and datasets. It also helps you gain practical insights into predictive modeling by implementing predictive-analytics algorithms on public datasets with Python. The course offers a wealth of practical guidance to help you on this journey to data visualization

商品描述(中文翻譯)

理解、評估和視覺化數據

關於本書
- 學習數據分析的基本步驟以及如何使用 Python 及其套件
- 一步一步的預測建模指南,包括提示、技巧和最佳實踐
- 有效地視覺化廣泛的分析數據並生成有效的結果

本書適合對象
本書適合希望進入數據分析領域並希望以更高效和更具洞察力的方式視覺化其分析數據的 Python 開發者。

您將學到的內容
- 熟悉 NumPy,並在數據分析中使用陣列和陣列導向計算
- 使用 Pandas 的時間序列功能處理和分析數據
- 理解預測分析算法背後的統計和數學概念
- 使用 Matplotlib 進行數據視覺化
- 使用 NumPy、Scipy 和 MKL 函數進行互動式繪圖
- 使用蒙地卡羅模擬建立金融模型
- 創建有向圖和多重圖
- 使用 D3 進行高級視覺化

詳細內容
您將從數據分析原則及其支持的庫的介紹開始課程,並學習 NumPy 的基本知識以進行統計和數據處理。接下來,您將概述 Pandas 套件,並利用其強大的功能解決數據處理問題。然後,您將簡要了解 Matplotlib API。接下來,您將學習如何操作時間和數據結構,並使用 Python 套件在文件或數據庫中加載和存儲數據。您將學習如何使用 Python 中的強大套件將原始數據處理成純淨且有用的數據,並通過範例進行實踐。您還將簡要了解機器學習算法,即將數據分析結果應用於決策或構建有用的產品,如推薦和預測,使用 Scikit-learn。之後,您將進入數據分析專業化——預測分析。社交媒體和物聯網導致了數據的激增。您將開始使用 Python 進行預測分析。您將看到如何從數據創建預測模型。您將獲得有關統計和數學概念的平衡信息,並使用 Pandas、scikit-learn 和 NumPy 等庫在 Python 中實現它們。您將深入了解最佳的預測建模算法,如線性回歸、決策樹和邏輯回歸。最後,您將掌握預測建模的最佳實踐。之後,您將獲得所有實用的指導,幫助您在有效數據視覺化的旅程中前進。從一章關於數據框架的內容開始,該章解釋了數據轉化為信息,最終轉化為知識的過程,接下來的內容將涵蓋使用最流行的 Python 庫進行完整的視覺化過程,並提供實作範例。

這條學習路徑結合了 Packt 提供的一些最佳內容,形成一個完整的策劃包。它包括以下 Packt 產品的內容:
- 《Getting Started with Python Data Analysis》,Phuong Vo.T.H & Martin Czygan
- 《Learning Predictive Analytics with Python》,Ashish Kumar
- 《Mastering Python Data Visualization》,Kirthi Raman

風格與方法
本課程作為一步一步的指南,幫助您熟悉數據分析及其支持的 Python 庫,並通過真實世界的範例和數據集進行學習。它還幫助您通過在公共數據集上實施預測分析算法,獲得有關預測建模的實用見解。課程提供了豐富的實用指導,幫助您在數據視覺化的旅程中前進。