Machine Learning for Finance (Paperback)
暫譯: 金融機器學習 (平裝本)
Jannes Klaas
- 出版商: Packt Publishing
- 出版日期: 2019-05-30
- 定價: $1,700
- 售價: 9.0 折 $1,530
- 語言: 英文
- 頁數: 456
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1789136369
- ISBN-13: 9781789136364
-
相關分類:
Machine Learning
- 此書翻譯自: Machine Learning for Finance (Paperback)
-
相關翻譯:
金融人才 × 機器學習聯手出擊:專為 FinTech 領域打造的機器學習指南 (Machine Learning for Finance) (繁中版)
Machine Learning for Finance (Paperback) (英版)
金融中的機器學習 (簡中版)
立即出貨 (庫存 < 4)
買這商品的人也買了...
-
$454OpenCV 圖像處理編程實例
-
$789重構 : 改善既有代碼的設計, 2/e (簡中典藏精裝版)(Refactoring: Improving The Design of Existing Code, 2/e)
-
$594$564 -
$505統計信號處理基礎 — 估計與檢測理論 (卷I、卷II合集)
-
$403統計信號處理基礎:實用算法開發‧卷III
-
$1,650$1,617 -
$680$530 -
$720$360 -
$760$570 -
$620$489
相關主題
商品描述
Machine Learning for Finance explores new advances in machine learning and shows how they can be applied across the financial sector, including insurance, transactions, and lending. This book explains the concepts and algorithms behind the main machine learning techniques and provides example Python code for implementing the models yourself.
The book is based on Jannes Klaas’ experience of running machine learning training courses for financial professionals. Rather than providing ready-made financial algorithms, the book focuses on advanced machine learning concepts and ideas that can be applied in a wide variety of ways.
The book systematically explains how machine learning works on structured data, text, images, and time series. You'll cover generative adversarial learning, reinforcement learning, debugging, and launching machine learning products. Later chapters will discuss how to fight bias in machine learning. The book ends with an exploration of Bayesian inference and probabilistic programming.
商品描述(中文翻譯)
《金融機器學習》探討了機器學習的新進展,並展示了這些技術如何應用於金融領域,包括保險、交易和貸款。本書解釋了主要機器學習技術背後的概念和算法,並提供了示範的 Python 代碼,讓讀者能夠自行實現這些模型。
本書基於 Jannes Klaas 為金融專業人士舉辦機器學習培訓課程的經驗。與其提供現成的金融算法,本書更專注於可以以多種方式應用的先進機器學習概念和想法。
本書系統地解釋了機器學習如何在結構化數據、文本、圖像和時間序列上運作。您將涵蓋生成對抗學習、強化學習、除錯以及推出機器學習產品。後面的章節將討論如何對抗機器學習中的偏見。本書最後探討了貝葉斯推斷和概率編程。