Time Series Analysis with Python Cookbook: Practical recipes for exploratory data analysis, data preparation, forecasting, and model evaluation (Paperback)
暫譯: 使用 Python 的時間序列分析食譜:探索性資料分析、資料準備、預測與模型評估的實用食譜 (平裝本)
Atwan, Tarek A.
- 出版商: Packt Publishing
- 出版日期: 2022-06-30
- 售價: $1,960
- 貴賓價: 9.5 折 $1,862
- 語言: 英文
- 頁數: 630
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1801075549
- ISBN-13: 9781801075541
-
相關分類:
Python、程式語言、Data Science
立即出貨 (庫存=1)
買這商品的人也買了...
-
$258$245 -
$354$336 -
$520$406 -
$534$507 -
$1,786Kubeflow for Machine Learning: From Lab to Production
-
$588$559 -
$780$616 -
$403機器學習中的概率統計:Python 語言描述
-
$414$393 -
$611金融中的機器學習
-
$1,980$1,881 -
$880$695 -
$880$695 -
$1,935Time Series Forecasting in Python (Paperback)
-
$714$678 -
$714$678 -
$1,014$963 -
$599$569 -
$419$398 -
$594$564 -
$454深度學習與大模型基礎(簡體書)
-
$301最優化理論與智能算法
-
$1,074$1,020 -
$352PYTHON 金融大數據分析快速入門與案例詳解
-
$403ESG投資
相關主題
商品描述
Perform time series analysis and forecasting confidently with this Python code bank and reference manual
Key Features:
- Explore forecasting and anomaly detection techniques using statistical, machine learning, and deep learning algorithms
- Learn different techniques for evaluating, diagnosing, and optimizing your models
- Work with a variety of complex data with trends, multiple seasonal patterns, and irregularities
Book Description:
Time series data is everywhere, available at a high frequency and volume. It is complex and can contain noise, irregularities, and multiple patterns, making it crucial to be well-versed with the techniques covered in this book for data preparation, analysis, and forecasting.
This book covers practical techniques for working with time series data, starting with ingesting time series data from various sources and formats, whether in private cloud storage, relational databases, non-relational databases, or specialized time series databases such as InfluxDB. Next, you'll learn strategies for handling missing data, dealing with time zones and custom business days, and detecting anomalies using intuitive statistical methods, followed by more advanced unsupervised ML models. The book will also explore forecasting using classical statistical models such as Holt-Winters, SARIMA, and VAR. The recipes will present practical techniques for handling non-stationary data, using power transforms, ACF and PACF plots, and decomposing time series data with multiple seasonal patterns. Later, you'll work with ML and DL models using TensorFlow and PyTorch.
Finally, you'll learn how to evaluate, compare, optimize models, and more using the recipes covered in the book.
What You Will Learn:
- Understand what makes time series data different from other data
- Apply various imputation and interpolation strategies for missing data
- Implement different models for univariate and multivariate time series
- Use different deep learning libraries such as TensorFlow, Keras, and PyTorch
- Plot interactive time series visualizations using hvPlot
- Explore state-space models and the unobserved components model (UCM)
- Detect anomalies using statistical and machine learning methods
- Forecast complex time series with multiple seasonal patterns
Who this book is for:
This book is for data analysts, business analysts, data scientists, data engineers, or Python developers who want practical Python recipes for time series analysis and forecasting techniques. Fundamental knowledge of Python programming is required. Although having a basic math and statistics background will be beneficial, it is not necessary. Prior experience working with time series data to solve business problems will also help you to better utilize and apply the different recipes in this book.
商品描述(中文翻譯)
自信地使用這本 Python 代碼庫和參考手冊進行時間序列分析和預測
主要特點:
- 探索使用統計、機器學習和深度學習算法的預測和異常檢測技術
- 學習評估、診斷和優化模型的不同技術
- 處理具有趨勢、多重季節模式和不規則性的各種複雜數據
書籍描述:
時間序列數據無處不在,且以高頻率和大量可用。它是複雜的,可能包含噪聲、不規則性和多種模式,因此熟悉本書中涵蓋的數據準備、分析和預測技術至關重要。
本書涵蓋了處理時間序列數據的實用技術,從各種來源和格式中獲取時間序列數據開始,無論是在私有雲存儲、關聯數據庫、非關聯數據庫,還是專門的時間序列數據庫如 InfluxDB。接下來,您將學習處理缺失數據的策略、處理時區和自定義工作日,以及使用直觀的統計方法檢測異常,然後是更高級的無監督機器學習模型。本書還將探討使用經典統計模型進行預測,如 Holt-Winters、SARIMA 和 VAR。這些食譜將提供處理非平穩數據的實用技術,使用冪變換、ACF 和 PACF 圖,以及分解具有多重季節模式的時間序列數據。稍後,您將使用 TensorFlow 和 PyTorch 處理機器學習和深度學習模型。
最後,您將學習如何評估、比較、優化模型,以及使用本書中涵蓋的食譜進行更多操作。
您將學到的內容:
- 了解時間序列數據與其他數據的不同之處
- 應用各種缺失數據的插補和內插策略
- 實現單變量和多變量時間序列的不同模型
- 使用不同的深度學習庫,如 TensorFlow、Keras 和 PyTorch
- 使用 hvPlot 繪製互動式時間序列可視化
- 探索狀態空間模型和未觀察組件模型(UCM)
- 使用統計和機器學習方法檢測異常
- 預測具有多重季節模式的複雜時間序列
本書適合誰:
本書適合數據分析師、商業分析師、數據科學家、數據工程師或希望獲得時間序列分析和預測技術的實用 Python 食譜的 Python 開發者。需要具備基本的 Python 編程知識。雖然擁有基本的數學和統計背景會有幫助,但並非必要。之前有使用時間序列數據解決商業問題的經驗也將幫助您更好地利用和應用本書中的不同食譜。