Codeless Time Series Analysis with KNIME: A practical guide to implementing forecasting models for time series analysis applications (Paperback)
暫譯: 無程式碼的時間序列分析與 KNIME:實用指南以實現時間序列分析應用的預測模型
Weisinger, Corey, Widmann, Maarit, Tonini, Daniele
- 出版商: Packt Publishing
- 出版日期: 2022-08-19
- 售價: $1,780
- 貴賓價: 9.5 折 $1,691
- 語言: 英文
- 頁數: 392
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1803232064
- ISBN-13: 9781803232065
-
相關分類:
Machine Learning
立即出貨 (庫存=1)
買這商品的人也買了...
-
$2,200$2,090 -
$599$569 -
$350$315 -
$301Python 機器學習實戰案例, 2/e
-
$1,280$1,254 -
$337現代機器學習
-
$454Python 預測分析與機器學習
-
$658數據應用工程:方法論與實踐
-
$407面向工業4.0的智能製造技術與應用
-
$539$512 -
$407超簡單的機器學習:人氣講師為你講解AI在工作中的應用
-
$1,200$948 -
$680$537 -
$541KNIME 視覺化數據分析
-
$654$621 -
$680$530 -
$305ChatGPT 與 AIGC 生產力工具實踐智慧共生
-
$505概率機器學習
-
$479$455 -
$500$425 -
$479$455 -
$505多模態深度學習技術基礎
-
$602預測模型實戰:基於R、SPSS和Stata
-
$551ChatGPT 實應用大全 (全影片·彩色版)
-
$356ChatGPT 寫作超簡單
相關主題
商品描述
Perform time series analysis using KNIME Analytics Platform, covering both statistical methods and machine learning-based methods
Key Features
- Gain a solid understanding of time series analysis and its applications using KNIME
- Learn how to apply popular statistical and machine learning time series analysis techniques
- Integrate other tools such as Spark, H2O, and Keras with KNIME within the same application
Book Description
This book will take you on a practical journey, teaching you how to implement solutions for many use cases involving time series analysis techniques.
This learning journey is organized in a crescendo of difficulty, starting from the easiest yet effective techniques applied to weather forecasting, then introducing ARIMA and its variations, moving on to machine learning for audio signal classification, training deep learning architectures to predict glucose levels and electrical energy demand, and ending with an approach to anomaly detection in IoT. There's no time series analysis book without a solution for stock price predictions and you'll find this use case at the end of the book, together with a few more demand prediction use cases that rely on the integration of KNIME Analytics Platform and other external tools.
By the end of this time series book, you'll have learned about popular time series analysis techniques and algorithms, KNIME Analytics Platform, its time series extension, and how to apply both to common use cases.
What you will learn
- Install and configure KNIME time series integration
- Implement common preprocessing techniques before analyzing data
- Visualize and display time series data in the form of plots and graphs
- Separate time series data into trends, seasonality, and residuals
- Train and deploy FFNN and LSTM to perform predictive analysis
- Use multivariate analysis by enabling GPU training for neural networks
- Train and deploy an ML-based forecasting model using Spark and H2O
Who this book is for
This book is for data analysts and data scientists who want to develop forecasting applications on time series data. While no coding skills are required thanks to the codeless implementation of the examples, basic knowledge of KNIME Analytics Platform is assumed. The first part of the book targets beginners in time series analysis, and the subsequent parts of the book challenge both beginners as well as advanced users by introducing real-world time series applications.
商品描述(中文翻譯)
執行使用 KNIME Analytics Platform 的時間序列分析,涵蓋統計方法和基於機器學習的方法
主要特點
- 獲得對時間序列分析及其應用的深入理解,使用 KNIME
- 學習如何應用流行的統計和機器學習時間序列分析技術
- 在同一應用中將其他工具如 Spark、H2O 和 Keras 與 KNIME 整合
書籍描述
本書將帶您進入一段實踐之旅,教您如何為許多涉及時間序列分析技術的用例實施解決方案。
這段學習旅程以難度逐漸增加的方式組織,從最簡單但有效的技術應用於天氣預測開始,然後介紹 ARIMA 及其變體,接著進入音頻信號分類的機器學習,訓練深度學習架構以預測葡萄糖水平和電力需求,最後以物聯網中的異常檢測方法作結。沒有時間序列分析書籍會缺少股票價格預測的解決方案,您將在本書的最後找到這個用例,還有幾個依賴於 KNIME Analytics Platform 和其他外部工具整合的需求預測用例。
在本書結束時,您將學習到流行的時間序列分析技術和算法、KNIME Analytics Platform、其時間序列擴展,以及如何將這兩者應用於常見的用例。
您將學到的內容
- 安裝和配置 KNIME 時間序列整合
- 在分析數據之前實施常見的預處理技術
- 以圖表和圖形的形式可視化和顯示時間序列數據
- 將時間序列數據分離為趨勢、季節性和殘差
- 訓練和部署 FFNN 和 LSTM 以執行預測分析
- 通過啟用 GPU 訓練神經網絡來使用多變量分析
- 使用 Spark 和 H2O 訓練和部署基於 ML 的預測模型
本書適合誰
本書適合希望在時間序列數據上開發預測應用的數據分析師和數據科學家。由於示例的無代碼實施,不需要編程技能,但假設讀者對 KNIME Analytics Platform 有基本了解。本書的第一部分針對時間序列分析的初學者,隨後的部分則通過介紹現實世界的時間序列應用來挑戰初學者和進階用戶。
目錄大綱
1. Introducing Time Series Analysis
2. Introduction to KNIME Analytics Platform
3. Preparing Data for Time Series Analysis
4. Time Series Visualization
5. Time Series Components and Statistical Properties
6. Humidity Forecasting with Classical Methods
7. Forecasting the Temperature with ARIMA and SARIMA Models
8. Audio Signal Classification with an FFT and a Gradient Boosted Forest
9. Training and Deploying a Neural Network to Predict Glucose Levels
10. Predicting Energy Demand with an LSTM Model
11. Anomaly Detection – Predicting Failure with No Failure Examples
12. Predicting Taxi Demand on the Spark Platform
13. GPU Accelerated Model for Multivariate Forecasting
14. Combining KNIME and H2O to Predict Stock Prices
目錄大綱(中文翻譯)
1. Introducing Time Series Analysis
2. Introduction to KNIME Analytics Platform
3. Preparing Data for Time Series Analysis
4. Time Series Visualization
5. Time Series Components and Statistical Properties
6. Humidity Forecasting with Classical Methods
7. Forecasting the Temperature with ARIMA and SARIMA Models
8. Audio Signal Classification with an FFT and a Gradient Boosted Forest
9. Training and Deploying a Neural Network to Predict Glucose Levels
10. Predicting Energy Demand with an LSTM Model
11. Anomaly Detection – Predicting Failure with No Failure Examples
12. Predicting Taxi Demand on the Spark Platform
13. GPU Accelerated Model for Multivariate Forecasting
14. Combining KNIME and H2O to Predict Stock Prices