Training Systems using Python Statistical Modeling
暫譯: 使用 Python 進行統計建模的訓練系統

Miller, Curtis

  • 出版商: Packt Publishing
  • 出版日期: 2019-05-17
  • 售價: $1,590
  • 貴賓價: 9.5$1,511
  • 語言: 英文
  • 頁數: 290
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1838823735
  • ISBN-13: 9781838823733
  • 相關分類: Python程式語言
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Python's ease of use and multi-purpose nature has led it to become the choice of tool for many data scientists and machine learning developers today. Its rich libraries are widely used for data analysis, and more importantly, for building state-of-the-art predictive models. This book takes you through an exciting journey, of using these libraries to implement effective statistical models for predictive analytics.

You’ll start by diving into classical statistical analysis, where you will learn to compute descriptive statistics using pandas. You will look at supervised learning, where you will explore the principles of machine learning and train different machine learning models from scratch. You will also work with binary prediction models, such as data classification using k-nearest neighbors, decision trees, and random forests. This book also covers algorithms for regression analysis, such as ridge and lasso regression, and their implementation in Python. You will also learn how neural networks can be trained and deployed for more accurate predictions, and which Python libraries can be used to implement them.

By the end of this book, you will have all the knowledge you need to design, build, and deploy enterprise-grade statistical models for machine learning using Python and its rich ecosystem of libraries for predictive analytics.

商品描述(中文翻譯)

Python 的易用性和多功能性使其成為當今許多數據科學家和機器學習開發者的首選工具。其豐富的庫廣泛用於數據分析,更重要的是,用於構建最先進的預測模型。本書將帶您踏上一段激動人心的旅程,使用這些庫來實現有效的統計模型以進行預測分析。

您將首先深入經典的統計分析,學習如何使用 pandas 計算描述性統計。接著,您將探討監督學習的原則,從零開始訓練不同的機器學習模型。您還將處理二元預測模型,例如使用 k-nearest neighbors、決策樹和隨機森林進行數據分類。本書還涵蓋了回歸分析的算法,如 ridge 和 lasso 回歸,以及它們在 Python 中的實現。您還將學習如何訓練和部署神經網絡以獲得更準確的預測,以及可以用來實現它們的 Python 庫。

在本書結束時,您將擁有設計、構建和部署企業級機器學習統計模型所需的所有知識,並利用 Python 及其豐富的預測分析庫生態系統。